المحتويات
Contents
CHAPTER 1. ATOMS IN MOTION
1-1 Introduction 1-1
1-2 Matter is made of atoms 1-2
1-3 Atomic processes 1-5
1-4 Chemical reactions 1-6
CHAPTER 2. BASIC PHYSICS
2-1 Introduction 2-1
2-2 Physics before 1920 2-3
2-3 Quantum physics 2-6
2-4 Nuclei and particles 2-8
CHAPTER 3. THE RELATION OF PHYSICS TO OTHER SCIENCES
3-1 Introduction 3-1
3-2 Chemistry 3-1
3-3 Biology 3-2
3-4 Astronomy 3-6
3-5 Geology 3-7
3-6 Psychology 3-8
3-7 How did it get that way? 3-9
CHAPTER 4. CONSERVATION OF ENERGY
4-1 What is energy? 4-1
4-2 Gravitational potential energy 4-2
4-3 Kinetic energy 4-5
4-4 Other forms of energy 4-6
CHAPTER 5. TIME AND DISTANCE
5-1 Motion 5-1
5-2 Time 5-1
5-3 Short times 5-2
5-4 Long times 5-3
5-5 Units and standards of time 5-5
5-6 Large distances 5-5
5-7 Short distances 5-8
CHAPTER 6. PROBABILITY
6-1 Chance and likelihood 6-1
6-2 Fluctuations 6-3
6-3 The random walk 6-5
6-4 A probability distribution 6-7
6-5 The uncertainty principle 6-10
CHAPTER 7. THE THEORY OF GRAVITATION
7-1 Planetary motions 7-1
7-2 Kepler's laws 7-1
7-3 Development of dynamics 7-2
7-4 Newton's law of gravitation 7-3
7-5 Universal gravitation 7-5
7-6 Cavendish's experiment 7-9
7-7 What is gravity? 7-9
7-8 Gravity and relativity 7-11
CHAPTER 8. MOTION
8-1 Description of motion 8-1
8-2 Speed 8-2
8-3 Speed as a derivative 8-5
8-4 Distance as an integral 8-7
8-5 Acceleration 8-8
CHAPTER 9. NEWTON'S LAWS OF DYNAMICS
9-1 Momentum and force 9-1
9-2 Speed and velocity 9-2
9-3 Components of velocity, acceleration, and force 9-3
9-4 What is the force? 9-3
9-5 Meaning of the dynamical equations 9-4
9-6 Numerical solution of the equations 9-5
9-7 Planetary motions 9-6
CHAPTER 10. CONSERVATION OF MOMENTUM
10-1 Newton's Third Law 10-1
10-2 Conservation of momentum 10-2
10-3 Momentum is conserved! 10-5
10-4 Momentum and energy 10-7
10-5 Relativistic momentum 10-8
CHAPTER 11. VECTORS
Symmetry in physics 11-1
Translations 11-1
Rotations 11-3
Vectors 11-5
Vector algebra 11-6
Newton's laws in vector notation 11-7
Scalar product of vectors 11-8
CHAPTER 12. CHARACTERISTICS OF FORCE
12-1 What is a force? 12-1
12-2 Friction 12-3
12-3 Molecular forces 12-6
12-4 Fundamental forces. Fields 12-7
12-5 Pseudo forces 12-10
12-6 Nuclear forces 12-12
CHAPTER 13. WORK AND POTENTIAL ENERGY (A)
13-1 Energy of a falling body 13-1
13-2 Work done by gravity 13-3
13-3 Summation of energy 13-6
13-4 Gravitational field of large objects 13-8
CHAPTER 14. WORK AND POTENTIAL ENERGY (conclusion)
14-1 Work 14-1
14-2 Constrained motion 14-3
14-3 Conservative forces 14-3
14-4 Nonconservative forces 14-6
14-5 Potentials and fields 14-7
CHAPTER 15. THE SPECIAL THEORY OF RELATIVITY
15-1 The principle of relativity 15-1
15-2 The Lorentz transformation 15-3
15-3 The Michelson-Morley experiment 15-3
15-4 Transformation of time 15-5
15-5 The Lorentz contraction 15-7
15-6 Simultaneity 15-7
15-7 Four-vectors 15-8
15-8 Relativistic dynamics 15-9
15-9 Equivalence of mass and energy 15-10
CHAPTER 16. RELATIVISTIC ENERGY AND MOMENTUM
16-1 Relativity and the philosophers 16-1
16-2 The twin paradox 16-3
16-3 Transformation of velocities 16-4
16-4 Relativistic mass 16-6
16-5 Relativistic energy 16-8
CHAPTER 17. SPACE-TIME
17-1 The geometry of space-time 17-1
17-2 Space-time intervals 17-2
17-3 Past, present, and future 17-4
17-4 More about four-vectors 17-5
17-5 Four-vector algebra 17-7.
CHAPTER 18. ROTATION IN Two DIMENSIONS
18-1 The center of mass 18-1
18-2 Rotation of a rigid body 18-2
18-3 Angular momentum 18-5
18-4 Conservation of angular momentum 18-6
CHAPTER 19. CENTER OF MASS; MOMENT OF INERTIA
19-1 Properties of the center of mass 19-1
19-2 Locating the center of mass 19-4
19-3 Finding the moment of inertia 19-5
19-4 Rotational kinetic energy 19-7
CHAPTER 20. ROTATION IN SPACE
20-1 Torques in three dimensions 20-1
20-2 The rotation equations using cross products 20-4
20-3 The gyroscope 20-5
20-4 Angular momentum of a solid body 20-8
CHAPTER 21. THE HARMONIC OSCILLATOR
21-1 Linear differential equations 21-1
21-2 The harmonic oscillator 21-1
21-3 Harmonic motion and circular motion 21-4
21-4 Initial conditions 21-4
21-5 Forced oscillations 21-5
CHAPTER 22. ALGEBRA
Addition and multiplication 22-1
The inverse operations 22-2
Abstraction and generalization 22-3
Approximating irrational numbers 22-4
Complex numbers 22-7
Imaginary exponents 22-9
CHAPTER 23. RESONANCE
23-1 Complex numbers and harmonic motion 23-1
23-2 The forced oscillator with damping 23-3
23-3 Electrical resonance 23-5
23-4 Resonance in nature 23-7
CHAPTER 24. TRANSIENTS
24-1 The energy of an oscillator 24-1
24-2 Damped oscillations 24-2
24-3 Electrical transients 24-5
CHAPTER 25. LINEAR SYSTEMS AND REVIEW
25-1 Linear differential equations 25-1
25-2 Superposition of solutions 25-2
25-3 Oscillations in linear systems 25-5
25-4 Analogs in physics 25-6
25-5 Series and parallel impedances 25-8
CHAPTER 26. OPTICS: THE PRINCIPLE OF LEAST TIME
26-1 Light 26-1
26-2 Reflection and refraction 26-2
26-3 Fermat's principle of least time 26-3
26-4 Applications of Fermat's principle 26-5
26-5 A more precise statement of Fermat's principle 26-7
26-6 How it works 26-8
CHAPTER 27. GEOMETRICAL OPTICS
27-1 Introduction 27-1
27-2 The focal length of a spherical surface 27-1
27-3 The focal length of a lens 27-4
27-4 Magnification 27-5
27-5 Compound lenses 27-6
27-6 Aberrations 27-7
27-7 Resolving power 27-7
CHAPTER 28. ELECTROMAGNETIC RADIATION
28-1 Electromagnetism 28-1
28-2 Radiation 28-3
28-3 The dipole radiator 28-5
28-4 Interference 28-6
CHAPTER 29. INTERFERENCE
29-1 Electromagnetic waves 29-1
29-2 Energy of radiation 29-2
29-3 Sinusoidal waves 29-2
29-4 Two dipole radiators 29-3
29-5 The mathematics of interference 29-5
CHAPTER 30. DIFFRACTION
30-1 The resultant amplitude due to n equal oscillators 30-1
30-2 The diffraction grating 30-3
30-3 Resolving power of a grating 30-5
30-4 The parabolic antenna 30-6
30-5 Colored films; crystals 30-7
30-6 Diffraction by opaque screens 30-8
30-7 The field of a plane of oscillating charges 30-10
CHAPTER 31. THE ORIGIN OF THE REFRACTIVE INDEX
31-1 The index of refraction 31-1
31-2 The field due to the material 31-4
31-3 Dispersion 31-6
31-4 Absorption 31-8
31-5 The energy carried by an electric wave 31-9
31-6 Diffraction of light by a screen 31-10
10
CHAPTER 32. RADIATION DAMPING. LIGHT SCATTERING
32-1 Radiation resistance 32-1
32-2 The rate of radiation of energy 3.2-2
32-3 Radiation damping 32-3
32-4 Independent sources 32-5
32-5 Scattering of light 32-6
CHAPTER 33. POLARIZATION
33-1 The electric vector of light 33-1
33-2 Polarization of scattered light 33-3
33-3 Birefringence 33-3
33-4 Polarizers 33-5
33-5 Optical activity 33-6
33-6 The intensity of reflected light 33-7
33-7 Anomalous refraction 33-9
CHAPTER 34. RELATIVISTIC EFFECTS IN RADIATION
34-1 Moving sources 34-1
34-2 Finding the "apparent" motion 34-2
34-3 Synchrotron radiation 34-3
34-4 Cosmic synchrotron radiation 34-6
34-5 Bremsstrahlung 34-6
34-6 The Doppler effect 34-7
34-7 The w, k four-vector 34-9
34-8 Aberration 34-10
34-9 The momentum of light 34-10
CHAPTER 35. COLOR VISION
35-1 The human eye 35-1
35-2 Color depends on intensity 35-2
35-3 Measuring the color sensation 35-3
35-4 The chromaticity diagram 35-6
/
35-5 The mechanism of color vision 35-7
35-6 Physiochemistry of color vision 35-9
CHAPTER 36. MECHANISMS OF SEEING
36-1 The sensation of color 36-1
36-2 The physiology of the eye 36-3
36-3 The rod cells 36-6
36-4 The compound (insect) eye 36-6
36-5 Other eyes 36-9
36-6 Neurology of vision 36-9
CHAPTER 37. QUANTUM BEHAVIOR
37-1 Atomic mechanics 37-1
37-2 An experiment with bullets 37-2
37-3 An experiment with waves 37-3
37-4 An experiment with electrons 37-4
37-5 The interference of electron waves 37-5
37-6 Watching the electrons 37-7
37-7 First principles of quantum mechanics 37-10
37-8 The uncertainty principle 37-11
38-5 Energy levels 38-7
38-6 Philosophical implications 38-8
CHAPTER 39. THE KINETIC THEORY OF GASES
39-1 Properties of matter 39-1
39-2 The pressure of a gas 39-2
39-3 Compressibility of radiation 39-6
39-4 Temperature and kinetic energy 39-6
39-5 The ideal gas law 39-10
CHAPTER 40. THE PRINCIPLES OF STATISTICAL MECHANICS
40-1 The exponential atmosphere 40-1
40-2 The Boltzmann law 40-2
40-3 Evaporation of a liquid 40-3
40-4 The distribution of molecular speeds 40-4
40-5 The specific heats of gases 40-7
40-6 The failure of classical physics 40-8
CHAPTER 41. THE BROWNIAN MOVEMENT
41-1 Equipartition of energy 41-1
41-2 Thermal equilibrium of radiation 41-3
41-3 Equipartition and the quantum oscillator 41-6
41-4 The random walk 41-8
CHAPTER 42. APPLICATIONS OP KINETIC THEORY
42-1 Evaporation 42-1
42-2 Thermionic emission 42-4
42-3 Thermal ionization 42-5
42-4 Chemical kinetics 42-7
42-5 Einstein's laws of radiation 42-8
CHAPTER 43. DIFFUSION
43-1 Collisions between molecules 43-1
43-2 The mean free path 43-3
43-3 The drift speed 43-4
43-4 Ionic conductivity 43-6
43-5 Molecular diffusion 43-7
43-6 Thermal conductivity 43-9
CHAPTER 44. THE LAWS OF THERMODYNAMICS
44-1 Heat engines; the first law 44-1
44-2 The second law 44-3
44-3 Reversible engines 44-4
44-4 The efficiency of an ideal engine 44-7
44-5 The thermodynamic temperature 44-9
44-6 Entropy 44-10
CHAPTER 45. ILLUSTRATIONS OF THERMODYNAMICS
45-1 Internal energy 45-1
45-2 Applications 45-4
45-3 The Clausius-Clapeyron equation 45-6
CHAPTER 38. THE RELATION OF WAVE AND PARTICLE
VIEWPOINTS
38-1 Probability wave amplitudes 38-1
38-2 Measurement of position and momentum 38-2
38-3 Crystal diffraction 38-4
38-4 The size of an atom 38-5
CHAPTER 46. RATCHET AND PAWL
46-1 How a ratchet works 46-1
46-2 The ratchet as an engine 46-2
46-3 Reversibility in mechanics 46-4
46-4 Irreversibility 46-5
46-5 Order and entropy 46-7
CHAPTER 47. SOUND. THE WAVE EQUATION
47-1 Waves 47-1
47-2 The propagation of sound 47-3
47-3 The wave equation 47-4
47-4 Solutions of the wave equation 47-6
47-5 The speed of sound 47-7
CHAPTER 48. BEATS
48-1 Adding two waves 48-1
48-2 Beat notes and modulation 48-3
48-3 Side bands 48-4
48-4 Localized wave trains 48-5
48-5 Probability amplitudes for particles 48-7
48-6 Waves in three dimensions 48-9
48-7 Normal modes 48-10
CHAPTER 49. MODES
49-1 The reflection of waves 49-1
49-2 Confined waves, with natural frequencies 49-2
49-3 Modes in two dimensions 49-3
49-4 Coupled pendulums 49-6
49-5 Linear systems 49-7
CHAPTER 50. HARMONICS
50-1 Musical tones 50-1
50-2 The Fourier series 50-2
50-3 Quality and consonance 50-3
50-4 The Fourier coefficients 50-5
50-5 The energy theorem 50-7
50-6 Nonlinear responses 50-8
CHAPTER 51. WAVES
51-1 Bow waves 51-1
51-2 Shock waves 51-2
51-3 Waves in solids 51-4
51-4 Surface waves 51-7
CHAPTER 52. SYMMETRY IN PHYSICAL LAWS
52-1 Symmetry operations 52-1
52-2 Symmetry in space and time 52-1
52-3 Symmetry and conservation laws 52-3
52-4 Mirror reflections 52-4
52-5 Polar and axial vectors 52-6
52-6 Which hand is right? 52-8
52-7 Parity is not conserved! 52-8
52-8 Antimatter 52-10
52-9 Broken symmetries 52-11
ملاحظة / إن المحاضرات في هذا الملف غير مترجمة إلى اللغة العربية
ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
يمكنكم من التالي تحميل المزيد من :